
This article describes the first empirical user test of a
prototype for a new programming environment. The
programming enviironment was designed to work
with DylanT” [3], a new oi+xt-oriented programming
language. The prototype’s user interface showed the
menu structure of the environment, and provided a
set of tools for performing a limited number of pro-
gramming tasks. For example, users did not compile
code with the prototype, but they did browse and
modify th? code of an existing program.

The test had two oix$xtives. The first was to

“debug” the usability of several critical parts of the
user interface. We wanted to find out how easy or dif-
ficult it was for programmers to learn and use the
prototype’s source code organization, cross-develop
ment model, and window-linking mechanism. The
second objective was to discover how programmers
viewed the capabilities of this new programming cnvi-
ronment. Specifically, we wanted to sre if the organi-
zation of the user inwrface suggested new ways to
think ahout the tasks involved in programming. In
order to meet these objectives, we modified the meth-

oda commonly uacd LO umduct a user test by having
a test administrator probe the subjects’ thinking at
key points in the test.

Our usability test uncovered several importam
usability problems and allowed us to discover how
programmers were thinking about the new environ-

ment. This ha curltinned our bclicf that usability
testing is a valuable method for exposing usability
problems and exploring ways that programmers
think about programming.

Background
When programmers create programs, they work with
a variety of tools in addition to the programming lan-
guage itself. These tools include debuggers for diag-
nosing errors in the running application, browsers
for searching and editing source code and objects,
and compilers for recompiling the code once the
changes have been made. The tools and the pro-
gramming language used with them are commonly

;, .,,, _,*c_,:,‘*_< /*y.~,,~~.xI~~~~~~,~,“~~,,,‘- ,~ ,,., ^,... _ ,” ,.. _ ,,. ,. ^ ,~ ,; ,. ,_. * ” .,_, ,_ .,~

I I UMouseTrackBehavior.cp
// Copyright 0 1992 by Apple Computer, Inc. All rights reserved.
ll Kent Sandvik DTS
I I This file contains the basic TMouseTrackBehavior member functions
/I Version Info:

::
<l> khs 1.0 First final version
<2> khs 1 .O. 1 Fixed & memory leak in TMapApplication::QetSleepValue()

#ifndef _MOUSETRACKBEHAVIOR_
#include “UMouseTrackBehav1or.h”
#endif

,,

// Initialize needed parts for the MouseTrackBehavior modules
#pragma segment AInit
pascal void InitMouseTrackBehaviorO
c

if (gDeadStripSuppression)
1

macroDontDeadStrip(TMouseTrackBehavior);
macroDontDeadStrip(TTrackWindow);

1

Re~sterStdType(“TTraclrWindow”, ‘ttrk’);
I

/I Close the remove the single swallow application when closing the floating window
#pra@na segment AClose
pascal void TPrackWindow::Close()

gMouseTrackWindow = NULL; I/ signal that it’s OK to open one again

gApplicataIl->RemoveBeha~~havior); // Get rid of the TSwallowSf!havior in gAppliication...

inherited::Close();
I

/I Get the pointer to the single swallow behavior which we need when removing it
#pragma segment ARes
pascal void TTrackWindow::GetOriginatorBehavior(TSwallowBehavior* behavior)
I

fBehavior = behavior;
I

