R interesting usability study of a prototype development environment for
the Dylan programming language is presented here. This study’s purpose is
lo determine just how close the prototype is to developers. New approaches to
source code organization and to the relationship between the environment
and the application being developed are introduced. An assessment of how
qffectw()ly the prototype conveys these innovations to Dylan developers is also

given, followed by some proposed improvements.

Dzscoven'ng th 'Way Progmm-— ers _ ~ ~
New Programming En\uronments

This article describes the first empirical user test of a
prototype for a new programming environment. The
programming environment was designed to work
with Dylan™ [3], a new ob]ect—onented programming
hnguage The prototype’s user interface showed the
menu structure of the environment, and provided a
set of tools for performing a limited number of pro-
gramming tasks. For example, users did not compile
code with the prototype, but they did browse and
modify the code of an existing program.

The test had two objectives. The first was to

“debug” the usability of several critical parts of the
user interface. We wanted to find out how easy or dif-
ficult it was for programmers to learn and use the
prototype’s source code organization, cross-develop-
ment model, and window-linking mechanism. The
second objective was to discover how programmers
viewed the capabilities of this new programming envi-
ronment. Specifically, we wanted to see if the organi-
zation of the user interface suggested new ways to
think about the tasks involved in programming. In
order to meet these objectives, we modified the meth-

45

COMMUNICATIONS OF THE AcM |unc 1005/ Vol 3% No ot

ods commonly used 16 conduct a user test by having
a test administrator probe the subjects’ thinking at
key points in the test.

Our usability test uncovered several important
usability problems and allowed us to discover how
programmers were thinking about the new environ-

Figure 1. A typical source code file. Related
statements are grouped spatially. Whitespace and

ASCII characters are used to delineate related defi-
nitions and logical breaks.

// UMouseTrackBehavior.cp

ment. This has confirmed our belief that usability
testing is a valuable method for exposing usability
problems and exploring ways that programmers
think about programming.

Background

When programmers create programs, they work with
a variety of tools in addition to the programming lan-
guage itself. These tools include debuggers for diag-
nosing errors in the running application, browsers
for searching and editing source code and ohjects,
and compilers for recompiling the code once the
changes have been made. The tools and the pro-
gramming language used with them are commonly

R

/! Copyright © 1992 by Apple Computer, Inc. Al rights reserved.

// Kent Sandvik DTS

// Thig file contains the basic TMouseTrackBehavior member functions

// Version Info:
/o <l> khs
// <8 khs

1.0 First final version
1.0.1
#ifndef __ MOUSETRACKBEHAVIOR__

#include “UMouseTrackBehavior.h”
#endif

Fixed a memory leak in TMapApplication::GetSleepValue()

// Initialize needed parts for the MouseTrackBehavior modules

#pragmsa segment Alnit
pascal void InitMouseTrackBehavior()
{

if (gDeadStripSuppression)

{

macroDontPeadStrip(TMouseTrackBehavior);
macroDontDeadStrip(TTrackWindow);

}

Register3tdType(“TTrackWindow”, ‘ttrk’);
)

// Close the remove the single swallow application when closing the floating window

#pragma segment AClose
pascal void TTrackWindow::Close()
{

gMouseTrackWindow = NULL;

gApplication->RemoveBehavior(fBehavior);

inherited::Close();
}

// signal that #t’s OK to open one again

// Get rid of the TSwallowBehavior in gApplication...

// Get the pointer to the single swaliow behavior which we need when removing it

#pragma segment ARes

pascal void TTrackWindow::GetOriginatorBehavior(TSwallowBehavior* behavior)

{
fBehavior = behavior;

}

46 June 1945/ Vol 38

N COMMUMICATIONS OF THE ACM

referred o as the development “environment.”

Software manufacturers now offer environments
containing tools and programming languages that are
designed to work together and have a common user
interface. From the programmers’ perspective, the
tools provided with the environment are often as
important as the language itself. For example, the suc-
cess of Visual Basic [10] has been largely attributed to
its programming tools, not the appeal of programming
in the Basic language. Competition among program-
ming environments has evolved from a focus on func-
tionality alone, that is, offering more tools or more
sophisticated tools, to competing on usability as well as
functionality. While programmers are clearly computer
literate, they, like any end users, want tools that provide
both new capabilities and ease of use. The evolution in
the programming environment marketplace is no dif-
ferent from the trends we have seen with other software
tools, such as spreadsheets and word processors.

Complicating the picture, however, is the realiza-
tion that as tools and users become more sophisticat-
ed, major productivity gains are accomplished only
through changes in the way that work is thought
about and done. A challenge for the programming
language developer is to provide a user-friendly envi-
ronment while helping programmers think different-
ly about the way they create programs.

The Prototype

The prototype used in our test was an early version of

the Apple Dylan environment. The environment was
designed to develop applications in Dylan, a new
dynamic object-oriented language.' This goal of the
Dylan project is to provide programmers with improved
productivity while at the same time enabling the practi-
cal delivery of small, fast applications. This is accom-
plished through a variety of language and development
environment features. Our usability test was limited to
an exploration of the development environment, so we

j()I:git‘nl—Oriv.“mt-'d Dynamic Languages are commonly referred to as OODLs.
An OODL is defined as a language that is object oriented, has automatic
memory management, supports dynamic linking and incremental develop-
ment, and provides self-identifying objects.

will describe only the ways
in which the development
environment differs from
traditional commercial
environments. We did not
test the usability of the syn-
tax or semantics of the
Dylan language.

Figure 2. An
object-oriented
storage model. In
an object-based
system, definitions

are stored in a
database, and defi-
nitions are edited
in separate editors.

Source Code
Organization

Most development envi-
ronments in wide use
today are file-based. In file-based systems, related
code is placed in a file, or in a group of files with
related names. Within each file, proximity within the
editor is also used as a smaller grouping mechanism.
To make it easier to find sections or individual defin-
itions, whitespace and lines of repeated ASCII char-
acters are often employed as delimiters between
related definitions (see Figure 1). The basic building
blocks of a file-based system are tightly coupled sec-
tions of code fragments in a file.

The file-based approach has ramifications for sav-
ing and compiling as well. When a portion of the file
is modified, usually the whole file is marked to be
saved and compiled. In addition, the ordering of def-
initions that the user sees in the editor is the same as
the ordering saved to disk. The storage model is
reflected in the user’s view of the code.

In contrast, the environment that was prototyped
manipulates code at the granularity of definitions
rather than files. Individual definitions are the pri-
mary building block and unit of storage. An object-
oriented database is used to store and retrieve
definitions (see Figure 2) and individual editors are
used to modify each definition. The definitions are
represented as individual objects to the user (see Fig-
ure 3). These objects, known as source records, can
be directly manipulated in the user interface, or their
contents can be edited as text.

Because the basic building block is a definition,
individual definitions can be saved, edited, or other-

CoOMMUNICATIONS OF THE AcM [une 1995 /Vol 38, No. & a7

. tiles

wise manipulated without affecting the other

i p»—-rﬁ‘ jl]l 115}
foctagon-square

class <cell> (<objects)
define class <ecell> (<object::
slot window, init-valus: #f;
=lot = , init=walue: #1 ;
|

ot o,

, init—ualue: #f1;
ot north,

imit—ualue: #1
init—uglue: #f
imit—uglue: #f1;
init—uglue: #f1;

SRR

T

L2 dgnore = method(®Freszt)

IJ-\-

— definitions in the system. The location of the
Y definition in the database is not under the con-
trol of the programmer, and is independent of
= the display order used within the development
environment. Because the storage model does
not imply a user-level ordering, an independent
user-controlled grouping mechanism is provid-
ed. This grouping mechanism is called a source
container (see Figure 4). A source container is
a folder-like user- llllﬁthl(e object that holds any
number of individual source records (de fini-
tions) in a user-specified order.

N The Development Cycle

il Traditionally, programmers working with static

(3] languages, such as C [9] and C++ [12], go

Figure 3. A source record is a representation of
a definition. The window shows source records for
two variables, one class, and one method. The
class source record has been expanded to show
its definition. These objects can be directly manip-
ulated in the user interface, or edited as text.

Figure 4. A source container is a folder-like
mechanism for grouping and ordering source
records. The window shows two source contain-
ers. The second, “tiles”, has been expanded to
show its contents.

through an edit-compile-link—debug cycle.
They make changes, recompile a large segment
of the program, relink it, test, and try again. Unfortu-
nately, this approach has the disadvantage of requir-
ing]‘ug(recompiles when small changes are made.
Dependency systems such as Make [H] help to reduce
the the recompile, but in
changes 10 a single definition sull require a
amount of unrelated code to be recompiled.
On the other hand, programmers working with
dynamic languages, such as Lisp [11], Smalltalk [7], and
l)\Lm have a different development cycle. Their edit-
unnpll(-debug cycle is much more incremental because
only modified definitions need to be recompiled. In
addition, these environments have traditionally provid-
ed other timesaving features that facilitate rapid proto-
typing, such as automatic memory management. In Lisp
and Smalltalk, this d\mumc approach has the dis-

scope of most cases,

fan

advantage of himlmg the distinction between the
development environment and the application

under development. Applications built with these
environments usually include multi-megabyte

s @ Tiles Project

b @ README

7 tiles

[3’ - FMachylan Tiles Frogram

& F=quare

Y2 Frandom

™ .

"4 $=erni-random
i $pentagon

-

Y5 $octagon-square
B

<ob] ectr J

dHTlﬂH | tcell> 0«

- cobjects o)
wifdow,

=lot init-walus: #¥f1;
slot =, init—ualue: #1;
=lot g, init—walue: #1;
slot north, ifit—walue: ¥
=lot =outh, inlt-walue: #¥f;
=lot east, init—walue: #1;
=lot =t, init-ualue: #f1;
end class <cell>;

r:' 1'-;r|-:-r'-§ = meth-:u:l[i#r’e:it}

images containing the compiler and other por-
tions of the development environment.

The Interactive Cross-Development Model
The Apple Dylan development environment
has two goals. First, it should allow program-
mers to build their programs interactively and
incrementally, as in Lisp and Smalltalk. Second,
it should generate small, fast programs with a
clear separation between the development and
runtime, like static development environments.
To simultaneously achieve these goals, the
development environment employs an interac-
tive cross-development model (see Figure b).
The development environment and the run-
time application execute as separate application
processes. The development environment
process manages a database that stores source
code, compiled code caches, and debugging
information. It is responsible for incrementally
- downloading compiled definitions and libraries

Development
Environment

R
- 3 P
L g -

I
Sources | g | Compiled I
Code I
Debugging |
I

I

I

[}

Infa

Database

o the separate application under development. The
application under development is executed, even
during debugging, as a separate process. These two
processes are usually running on the same machine,
but this is not required, enabling remote debugging
and development in distributed systems.
Communication between these concurrent
processes is very different from the typical C and C++
model. In most static languages, the code is either
being edited in the development environment, or the
application is running. Interactively modifying an
independent application process requires a different
conceptual model of program development.

Multi-Paned Linked
Windows

Figure 5. Interactive cross-develop-
ment model. Source code, compiled
definitions and debugging informa-

tion are stored in a database. The
development environment downloads
compiled definitions and libraries to
the application under development.
When development is complete, the
links between the developed applica-
tion and the development environ-
ment are severed, resulting in a small
deliverable application.

ronments such as Object Master [1] and
Smalltalk-80 [6]. Pane-based browsers
arc a powerful tool because they allow
the programmer to have linked group-
ings of related code. One pane may
show a class hierarchy, while another
shows the source for a selected class in the hierarchy.
Development environments that make use of paned
browsers usually provide several configurations that
are employed for a variety of special purposes, such as
inspecting groupings of related methods, attributes
of a class, or relations between methods and classes.
Although these pre-configured browsers are useful,
they do not allow much customization or tailoring to
an individual programmer’s browsing needs.

In the environment we tested, windows may contain
any number of panes, each displaying a user-config-
urable type of information. The user can change the
type of information that is shown in the pane by select-

Another attribute that
makes developing in Apple
Dylan different is the envi-
ronment’s flexible pane- i
based” window system. & ccell-view: — b = colurin Cobject @ <cell®) e
- _hac ; eucte . T C - ’ L
Pane-based window “',""[.L ms b & <ol b @ column (object :- <cells) i
have been successfully _) .
B - SR P& <zet-tile-crossing-event: P column-setter (value, object o <
employed in a variety of dif-)]) CT
ferent (levelopmem envi- [) & dzet-tile-size-ewvents % i} Z column-setter (wvalue, object @0 <]
T T T e =
“Panes are like nested windows; the IR - 2] (I 2 |
only limitation is that panes within a & 2
window may not overlap. $ 22 <cell> [(thect}) e
define class <cell>» (<object:> -
) ffCells =it in g wiew, and have (x,y? coordinates o
Figure 6. A multi- slot view uienr,
paned browser. Each required-init-kegword: wiew:;
pane has controls for _ -)

N e slot row <integer:, e
splitting, resizing, required-init-kegword: row:; £x
zooming, scrolling, and q! 12 |
closing. IF.L—J

| Pane Splitter
COMMUNICATIONS OF THE ACM [uic [Y95/ Vol 3% No b 49

7a

7h

7c

7d

Te

= R : =]

» W@ Classes in: Tiles Project 4

P& cell-views O
P& ceell N
P& <set-tile-crossing-event:

B & <set-tile-size-event>

3|

& = (E
=]

& 2 i . o

» W@ Classes in: Tiles Project

P& czell-views -

b el

B& <set-tile-crossing-events

& <zet-tile-zize-ewvents

HE BE &

. ﬁ Classes in: Tiles Project 4
Boa& doell-views ~
b~ seells
B & <set-tile-crossing-event:
[+ & <zet-tile-size-events
= B RE

= . = : 2 .

» @ Classes in: Tiles Project 5 *.'. Direct Methods: <cell> »

Bo& cell-view: — % column (object :: <cell>)

b geells = column (object :: <cells)

P& <set-tile-crossing-event: & colurnn-setter (value, object :: g

P& <zet-tile-zize-events & column-setter (value, abject ©: <
) EE S =

3
% =» Direct Methods: <se...

v v o | R

.*h- ¢ f¢ fe

e =
B classes in: Tiles Project 5

“cell-view s
<cells
<zet-tile-crossing-event:

<zet-tile-zize-event>

b= do-event (view o <tiling-view:, §=
P @ do-marking (event :: <set-tile-sig

B & tile-gzize (event :: <zet-tile-zize-

E

BE

w File Edit Text Project

Browse Compile Oebug Windows

ing from a list of aspects available via a menu. Examples
of aspects include “contents,” “direct methods,” “source
code,” and “references to.” In addition, each pane has
its own title bar and set of controls for resizing, zoom-
ing, scrolling, splitting, and closing. For example, Fig-
ure 6 shows a browser with three panes. The upper-left
pane is displaying the “classes” aspect of a project. The
upper-right pane is displaying the “direct methods”
aspect of the class <cell>. The lower pane is showing the
“source code” aspect of the class <cell>.

The user creates new panes with the horizontal
and vertical split bars located on the edges of the
scroll bars. The size of the panes is controlled by plac-
ing the pointer on the border between two panes,
and then clicking and dragging.

In addition, the window system contains a mecha-
nism for creating links between panes within a single
window or across mu]tipl(' windows. To associate
information across panes, a user creates a hot link. A
hot link connects two panes so that selecting an

Figure 7. Hot-linking
panes

* Figure 7a. The user
clicks and holds onto
the output arrow of
the left pane.

* Figure 7b. The user
drags the left pane’s
output arrow toward
the right pane’s input
arrow.

 Figure 7¢. The user
drops the left pane's
output arrow on the
right pane's input
arrow.

* Figure 7d. The hot
link is established. The
arrows that form the
connection become
red to indicate the
link. The hot link caus-
es information about
items selected in the
left pane to be shown
in the right pane.

* Figure 7e. When the
selection changes in
the left pane, the con-
tents of the right
pane are updated.

object in the first pane
causes the object to
expand to show related
objects or editors in the
second pane. For exam-
ple, in Figure 6, the
upper-left pane is hot-
linked to the upper-
right pane and also to
the lower pane. The
information shown in
the right and bottom
panes is updated based
upon the selection in
the left pane.

Figures 7a-7e¢ show
the process for hotlink-
ing panes. To link two
panes, the user grabs
(clicks and drags) the
output (right) arrow of
the first pane (Figures
7a, 7b) and drops it
(releases the mouse but-
ton) on top of the input
(left) arrow of a second
pane (Figure 7c¢). Both
arrows become red o
indicate the link (Figure
7d). The pane on the left
now controls what is dis-
played in the pane at the
right. In addition to
examining the arrows,
the user can deduce the
behavior of these panes

Figure 8. The Apple Dylan menubar. At the
beginning of the usability test, users were asked
what they thought would be in each menu.

New HEN New... Execute Selection #E

Open... > ipen

Close ® Close Compiler Warnings
Add to Project... [Undefined Dariables

Save S i Duplicate Definitions

Save Rll Sources Set Runtime

Revert... ¥R Connect

mport... Disconnect

Export... Update #U Figule 9.
Recompile A

Page Setup... The File,

Print... ®P Project Browser Project, and

Quit 10 compile

menus.

empirically by selecting items in
them and watching what happens
in the other panes. Notice that
<cell> is highlighted in the left-hand pane and its
direct methods are displayed in the right-hand pane
(Figure 7d). When the selection changes in the left
pane, the contents of the right pane are updated, in

this case showing the direct methods of the class
<cellview> (Figure 7¢).

The Test Method

In order to understand how users were thinking about
the Apple Dylan saving model, cross-development
model, and pane-linking mechanism, we performed a
usability test. Usability testing is an empirical method
for finding the most serious usability problems with
the user interface to a product [8]. There are five
characteristics of every usability test [4]:

1. The focus is on finding usability problems.
2. The participants in the test come from the popu-
lation of people who will use the product.
3. The participants perform typical tasks that the
product was intended to support.
4. The test administrators observe the test partici-
pants and record their performance.
. The test administrators diagnose the usability
problems they record and propose solutions to
the problems.

ot

In a typical usability test, test participants “think
out loud” while working alone. The test team watches
and records key events. This method is assumed to
simulate situations in which users normally learn to
use a new application or to simulate the condition in

COMMUNICATIONS OF THE ACM unc [995/ Vol 35, Noot 5 l

which the user has no support from colleagues or a
customer support phone line.

Having the test participants perform tasks alone
would have allowed us to probe the usability problems
with the programming environment prototype and to
accurately measure the programmers’ performance,
such as their task times. Bur their working alone
would provide less insight into how the participants
were thinking and learning about the new environ-
ment. Studies of the “think out loud” technique have
shown that most of the statements participants make
are simply verbal descriptions of the actions they are
taking. Such descriptions would uncover usability
problems, but would not help us to understand how
the participants viewed the menu structure or what
users thought they could do with the environment.

e chose to use a special-
ized usability testing
method known as “active
mtervention” [4]. In this
method, the test admin-
istrator sits with the test
pdl'tl(lpdﬂt watching what
is happening. The test
participant thinks out loud as he or she works. Dur-

ing tasks that are designed to probe the usability of

the interface, such as attempting to link panes, the
administrator simply watches the participant without
comment. However, at prearranged points, the
administrator asks questions of the participant that
are intended to reveal how he or she thinks about the
environment and to probe for additional information
whenever the participant does or says something
insightful.

The Test Participants

We recruited eight professional programmers for the
test. Recent studies of usability testing have shown
that 80% of usability problems are uncovered by five

test participants. Ten participants uncovered 90% of

the problems, but 100% of the serious usability prob-
lems [14, 16]. All eight participants had been pro-
gramming professionally for at least the past two
years, were familiar with Apple’s System 7 [2], and
had some experience with object- ()nented program-
ming. In screening the test participants, we excluded
programmers who worked at developing program-
ming environments because they might have some
specialized knowledge that most programmers would
not have. In addition, we excluded programmers who
were heavy users of Lisp or Smalltalk, two dynamic
programming environments. We chose to exclude
them because we were concerned that their previous
exposure to dynamic environments would have a
noticeable impact on their comprehension of how
this environment worked."

“As the testing progressed, our concerns were confirmed. Programmers who
had even a small amount of exposure (in a college class, for example) to Lisp
or Smalltalk more quickly understood the new capabilities of the environment.

June 1995/ Vol 35, No. § COMMUNICATIONS OF THE ACM

The Procedure

With the exception of the active intervention role of
the administrator, we followed a fairly standard usabil-
ity testing format for all of the testing subjects. As
preparation, we first had the participants complete a
short background questionnaire and sign a confiden-
tiality agreement. We then had them read a brief (two-
page) high-level overview document that described the
capabilities of the development environment. We also
informed the subjects that there were observers on the
other side of a two-way mirror who were interested in
how the software performed, and that the session was
being videotaped. We explained to the participants
that they would be performing a set of predefined
tasks using a new programming environment, and
made it clear that the focus of the test was on how the
product performed, not on how they performed. As
the final step of preparation, we gave the subjects a
short training session on how to think out loud.

For the actual test, we had the subjects perform a
set of tasks and also answer questions. The questions
were posed by the test administrator, who was sitting
in the test room with the participant. The tasks we had
them perform were designed to probe the usability of
the user interface. For example, to test the users’
understanding of the source code organization, we
had programmers textually edit and save changes to
code from a program we had constructed. We also
had them browse the code to look for a variety of detf-
inition types, such as classes, methods, and comments.
We asked participants to add and remove individual
definitions from a project. In another set of tasks we
explored the hotlinking mechanism and multi-paned
windows. Early in the test session, we exposed the pro-
grammers to a browser with three linked panes. Later
in the test, we removed the browser and asked the pro-
grammers to recreate it. We gave them a one-paned
browser and asked them to “separate this window into
three panes and link them together so that the brows-
er behaves like the one we worked with earlier.”

The test administrator’s questions were designed
to gain insight into the participants’ understanding
of what they could do with the environment. For
example, we began the test with three questions prob-
ing programmers’ first impressions of the capabilities
of the environment. As they sat before the screen
with the menubar visible, (see Figure 8) we asked,
“Without pulling them open, tell me what you think
each of the menus contains. Now, one by one, pull
down the menus and tell me what you think each
command is used for. What do the groupings of
options in each menu indicate to you?”

To illustrate a portion of this task, Figure 9 shows the
File, Project, and Compile Menus. One of the issues
that interested us was whether programmers would
want to have several projects open at the same time.
This probing of the menus provided us with an answer.
The Project Menu (Figure 9) shows the New, Open,
and Close Project options as they would appear when a
project is opened and displayed in a window. Most

users commented that since the New and Open options
were “grayed” out, that it was likely that only one pro-
ject could be open at a time. Several users made com-
ments such as “Think C [13] only lets you have one
project open, too. I don’t like that limitation.”

During a later task, we asked the participants to
describe what they thought each of the icons in the
interface was used for and what each graphic meant.
After the test, we had the test participants fill out a
short post-test questionnaire that asked for their
impressions of the environment. At the end of the
test session, we paid each programmer $100 for par-
ticipating in the test.

What We Found

Each programmer spent about four hours with us
exploring this early version of the software and
expressing their thoughts. The videotapes from these
sessions contain many insights into the way they
understood and used the user interface. We have bro-
ken the discussion of our results into two different
sections. The first section describes the most critical
usability problems we found. The second section dis-
cusses the problems the programmers had in under-
standing the capabilities of the environment.

Usability Problems

The test subjects encountered two major usability
problems, as well as several minor ones. We will dis-
cuss only the major problems, which were discovering
how to split and link panes, and interpreting icons.

Splitting and Linking Panes. One of the questions we
wanted to answer was whether programmers would be
able to learn how to split and link panes by discovery
rather than being taught. All eight participants were
able to split panes without effort, but they had a much
more difficult time discovering how to hotlink panes
together. There appeared to be two problems.

First, the “hot link” metaphor was not obvious to the
participants. Several did not notice that red arrows
indicated a hot link until the test administrator point-
ed it out. Even after the participants were aware of the
relation of the red arrows to hotlinked panes, they
could not determine how to “make the arrows red.”
This was the second problem; the participants had
never seen a window control that could be dragged
and dropped. One of the participants actually stated
what he (incorrectly) believed to be a Macintosh user-
interface rule, namely, “you can’t pick up or drag a
window control.” While this
programmer may not have
been aware of it, the drag and
drop function was a new Macin-
tosh behavior that had recently
been released by Apple. At the
time of testing, most Macintosh
applications did not support
the behavior, and this was the
cause of the confusion. Recent-

P B README

based on a folder.

Figure 11. Old and new source
container icons. The new icon is

@ oL E

ly the dragging support was
added to the standard sys-
tem software. This has made
operations such as picking
up and dragging controls
much more common. Thus
we expect the severity of this
usability problem to dimin-
ish with time.

Once the participants
discovered (or were
shown) how to link panes, they had no trouble under-
standing and remembering the operation. We con-
cluded that linking panes is initially hard to discover,
but makes sense and is remembered after one
demonstration. Further experience with this environ-
ment confirms that once users know how to link
panes, they do not forget.

The development team is exploring several solu-
tions to the initial learning problem with linking
panes. They are examining other metaphors and
icons for linking, but thus far have not found a new
metaphor that is substantially better at represent-
ing the linking process. In addition, they are test-
ing the concept of automatic linking. The system
has been modified so that when the programmer
uses the pane splitter to split a window, the con-
tents of that pane will be automatically linked to its
parent pane. The initial reaction to this change has
been positive, and seems to address the needs of
most programmers.

Figure 10. Apple
Dylan icons. From left
to right: project,
source container,

comment, class,
method, variable, and
unsaved sources.

Interpreting Icons. The second major cluster of usabil-
ity problems was in the area of interpreting icons.
Figure 10 shows the icons that were considered mosi
critical. These icons had been created by the devel-
opment team to facilitate grouping the code by type.
For example, the method icon, which was designed
to look like a logic gate superimposed over a docu-
ment, was intended to be a visual clue that the
object was a source record containing a method def-
inition. If programmers picked up on this visual
clue, it would move them toward thinking about def-
initions as individual objects. It would also enable
users to quickly scan for different types of defini-
tions within the code since all the methods would
have this special “method
source record” icon.
Unfortunately, three usabili-
ty problems with the icons pre-
vented the programmers from
understanding the designer’s
intention to provide visual
clues about the source code
structure and definition types,
The first problem was the deci-

b README

COMMUNICATIONS OF THE A€M |uic 1995/ Vol 38 No 6

sion o use a document icon (a page of text with the
top right-hand corner turned down) for the folder-
like source container. While the programmers all
understood the document icon from their Macintosh
experience, it was not clear to them in what sense
groupings of code are like a document. Using the
document icon in this way confused the program-
mers. Although definitions appeared in individual
source records, the document icon made them won-
der if the source code was stored in files, or in a data-
base, or both. Source containers are more like folders
than documents. The designers have subsequently
changed the symbol to that of a folder rather than a

Understanding the Capabilities of

the Environment

In addition to uncovering usability problems, we
wanted to determine the degree to which program-
mers understood the three conceptually new capabil-
ities of the Apple Dylan environment. These three
areas were source code organization, the interactive
cross-development model, and the interactive devel-
opment cycle.

Understanding Source Code Organization. As we dis-
cussed earlier, one of the major differences between
an object-oriented environment and a file-based envi-

The most revealing resull of this short test was the realization
that it is difficult to change the way people do their work,
and that we are only beginning to vnderstand
how to structure a user interface that
suggests new possibilities.

document (see Figure 11), and have renamed source
containers to source folders.

The second problem was that most of the pro-
grammers did not understand the meaning of the var-
ious source record icons. Different icons were used
for comments, definitions, methods, and classes (see
Figure 10). The most effective icon was the comment

icon, which looked like a yellow Post-it note. Five of

the programmers understood it the first time they saw
it. The rest saw it as a file card, probably because of its
shape. But even the programmers who saw it as a file
card understood its relationship to comments. The
rest of the icons were less successful at passing the
strongest test of an icon, namely, that its meaning be
obvious at first glance. Two programmers immediate-
ly saw the method icon as a logic gate, and three saw
the set symbol as representing classes. The rest of the
programmers did not understand the links between
the graphics and what they represented. Once the
programmers were told what the icons represented,
they all saw the link with the type of code. For the
remainder of the test, they had no problem linking
the icon with the type of code segment. This finding
has been confirmed with subsequent users. Users
need some aid such as balloon help [2] or a quick ref-
erence card to initially understand what the icons
mean. Once they understand the relationship
between the symbol and the type of source record,
they can rely on the visual cue when programming.

Finally, in a finding we anticipated, the 12 x 12
pixel icons with 9-point text were too small to see
without moving close to the screen or squinting. In
response, the design now allows users to enlarge the
icons to 16 x 16 or 32 x 32 pixels, and users can vary
the font size up to 36 points.

5“ June 1995/ Vol 35, No. 6 COMMUMNICATIONS OF THE AcMm

ronment is the organization of code into a database
structure rather than a file structure. The basic unit
of code in the environment we tested is a source
record rather than a file. The source records include
units of code such as methods, classes, variables, and
comments. These code fragments are connected
through links in a database and user-detined source
container groupings rather than through a linear file
structure.

Figure 9 shows that the File menu in the prototype
had the traditional items for manipulating files, such
as New, Open, Close, and Save. When asked what
they thought the File menu did, the programmers
quickly responded that they expected this to be for
manipulating files. When they came to the Project
menu, about half of the programmers were confused.
They did not understand the differences between the
commands on the File and Project menus. If File con-
tains options for managing files, then what do the
options in Project dor For instance, one programmer
said, [t is not clear whether project stuff should be here (in
the Project menu) or in the File menu.

Some other programmers were not confused, but
they did assume that projects were collections of files.
For example, a programmer said, Project is where |
manage the files of the project I am working on.

As the sessions progressed, there were repeated
instances in which the programmers referred to files
as they discussed other features of the environment.
For example, one programmer, in (incorrectly)
describing what he thought the arrows on the panes
were for said, Maybe they provide information abowt
what’s in the files.

The expectation that code is organized into files
was reinforced by the use of the document icon for

source containers and the use of a document in the
background of the source record icons. Since the
document icon is typically used in Macintosh applica-
tions to represent files of text, the programmers
assumed that the code for the sample program we
created was organized into text files. Clearly, the pro-
grammers we tested were (at best) confused about
the organization of code in the environment. The
familiar looking File and Edit menus and the docu-
ment icon led the programmers to expect a familiar
file structure. In this case, the familiarity worked
against the design, leading the programmers to pro-
ject their past experiences with programming onto
this environment.

In response to this confusion, the basic commands
tor manipulating projects (New, Open, Add to Pro-
ject, and Close) have been incorporated into the File
menu. Informal feedback from users has led the
developers to believe that this rethinking of the menu
structure, coupled with the new icon for source con-
tainers, has eliminated most of the confusion about
source code organization.

Understanding the Interactive Cross-Development Model.
The dynamic interaction between the development
environment and the application under develop-
ment was not apparent to any of the test subjects,
even though they had been briefed on the interac-
tive cross-development model in the pre-test
overview material.

When probed about the commands for interact-
ing with the application under development, such
as Connect... and Set Runtime... the users did not
associate the commands with the cross-develop-
ment model. In addition, there were several occa-
sions during the testing sessions when the
connection to the application was lost, but it was
not clear to the users what this meant, or how it
affected their test project. We believe at least three
factors contributed to the problem, but do not have
a solution to the problem.

The first contributory factor was that when the test
subjects sat down to begin the test, the development
environment was already up and running and con-
nected to an application. No active intervention was
needed to connect the two processes.

Secondly, the UI did not provide a strong visual
indication of the status of the application process.
When the connection was lost, the title of a window
changed, and the Set Runtime... and Connect...
commands were undimmed in the menus. These sub-
tle changes did not get the users’ attention.

And, finally, we believe that the concept of cross-
development is fairly new to most mainstream devel-
opers. In the months since the test, the Ul has been
updated to give a more visible indication of the status
of the application under development. Unfortunately
these changes do not appear to have facilitated the ini-
tial shift in thinking that is required when program-
ming with an interactive cross-development model. We

aronments

New Progra

would like to run more usability tests o further
explore programmers’ mental models in this area.

Understanding the Development Cycle. As we dis-
cussed earlier, one of the advantages of this envi-
ronment is that it allows a programmer to compile
only the sections of code that have been changed.
In the original design of the prototype, the Update
command in the Project menu (see Figure 9) was
intended to automatically compile only those defi-
nitions that had changed. On the other hand, the
Recompile command performs a complete recom-
pile of all code in the project, which can take sev-
eral minutes with a large project. The intention
was to keep all of the options that had to do with a
project in the Project menu.

The test participants were confused by these
options. They could not predict what Update would
do. They were split on whether Recompile would
compile only changes or the entire program. They
were further confused by the fact that there was a
Compile menu with a Compile Selection option,
which compiled only the section of code that the user
had highlighted.

Clearly, these options needed to be reorganized
and made more explicit. The new design has elimi-
nated the Compile menu and grouped all the com-
piling commands on the Project menu. Users can
now choose between Compile Selection, Update
“Name of Project”, and Recompile. When program-
mers select Recompile, there is a confirmation dialog
asking if they want to recompile the whole project.

Conclusion

The development team learned a great deal about
the initial prototype’s user interface by spending
about one week systematically observing and talking
with eight programmers. We hope our experience
will motivate others to conduct similar usability tests
of their own programming projects. We expected to
find some usability problems—and we did. In addi-
tion, we explored how programmers were thinking
about a relatively complex programming environ-
ment. We chose to sit and talk with the programmers
as they worked. At times we asked questions that
probed their understanding of what they were seeing.
At other times we watched quietly as they tried to per-
form tasks. We believe that this method of active
intervention worked well for testing a prototype at
this early stage of development.

The most revealing result of this short test was the
realization that it is difficult to change the way people
do their work, and that we are only beginning to
understand how to structure a user interface that sug-
gests new possibilities. Inadvertently, the design sug-
gested to the participants that the familiar file-based
organization of code had not changed. It also con-
fused users about the possibilities of incremental
compilation. Further iterations of testing will tell
whether we have solved those problems and whether

COMMUNICATIONS OF THE ACM Junc 1995/Vol. 38, No. 6

June [995/Vol 3%, No. b COMMUMNICATIONS OF THE ACM

another sample of programmers will beuer under-
stand the new capabilities of this environment. We
will create online and printed aids for those pro-
grammers who will use them, but we are still trying to
suggest new possibilities through the organization of
the user interface.

Acknowledgments.

We would like 1o thank Rick Fleischman, Ross
Knights, Andrew Shalit, Orca Starbuck, and Carl
Waldspurger for their helpful comments. 3

References

1. ACL Inc. Obect Master Reference Manual. ACL Ine, San Jose,
Calil., 1993,

2. Apple Computer, Inc. Macintosh User’s Giade. Apple Computer,
Inc., Cupertino, Calif., 1994,

3. Apple Computer, Inc. Dylan: An Object-Oviented Dynamic Leo
guege. .'\pp](’ Computer, Inc., Cupertino, Calif., 1992,

4. Dumas,]., and Redish, |. A Practical Guide to Usability Testing
Ablex Publishing Corporation, Norwood, NJ, 1993,

5. Feldman, S.1. Make—A Program for Maintaining Computer
Programs. Software Practice and Experience, volume 9, (1979), pp.
255265,

6. Goldberg, A. Smalltalk-80: The Interactive Programming Environ
ment. Addison-Wesley, Reading, Mass., 1984.

7. Goldberg, A., and Robson, D. Smalltalk-80: The Language. Addi-
son-Wesley, Reading, Mass., 1989,

8. Gould, J.D., and Lewis, C. Designing for usability—key princi-
ples and what designers think of them. Commun. ACM 28, 3
(Mar. 1985), 300-311.

Kernighan, B.W., and Ritchie, D.M. The € Programming Lan
guage, 2d ed. Prentice-Hall, Englewood Clifts, NJ, 1988,

10. Microsoft Corporation. Microsoft Visual Basie Programmer’s Guade.
Microsott Corporation, Redmond, Wash., 1992,

11. Steele, G. Common Lisp: The Language. Digital Press, Maynard,
Mass., 1984,

12. Swoustrup, B. The C++ Programming Language, 2d ed. Addison-
Wesley, Reading, Mass., 1991.

13. Symantec Corporation. Think C for Macintosh User's Guide.
Symantec Corporation, Cupertino, Calif., 1993.

14. Virzi, R. Streamlining the design process: Running fewer sub-
Jects. In Proceedings of the Huwman Factors Society 34th Annual Meet
ing, (1990}, 201-294.

15. Virzi, R. Refining the test phase of usability evaluation: How
many subjects is enough? Human Factors 34, (1992), 457468,

@

About the Authors:

JOSEPH DUMAS is a vice president at American Institutes 1o
Research. Current research interests include methods for evaluat-
ing the user interface to software. Author’s Present Address: Amei

ican Institutes for Research, 70 Westview St. Lexington, MA 02173,
email: dumas@forsythe.stanford.edu

PAIGE PARSONS is a human interface specialist at Apple Com-
puter. Current research interests include visual interaction design
and browsing metaphors for large information spaces. Author’s
Present Address: Apple Computer, 1 Main Street, 7th Floor, Cam-
bridge, MA 02142, email: parsons@cambridge.apple.com; WWW:
htp://www.cambridge.apple.com/users/paige.html

Permission to copy without fee all or part of this material is granted provid-
ed that the copies are not made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the publication and its datc
appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fec
and/or specific p(‘rmissinn,

© ACM 0002-0782/95/0600 $3.50

